The alignment of a highway is a three-dimensional problem measured in x, y, and z coordinates. This is illustrated, from a driver’s perspective. However, in highway design practice, three-dimensional design computations are cumbersome, and, what is perhaps more important, the actual implementation and construction of a design based on three-dimensional coordinates has historically been prohibitively difficult. As a consequence, the three-dimensional highway alignment problem is reduced to two two- dimensional alignment problems. One of the alignment problems in this figure corresponds roughly to x and z coordinates and is referred to as horizontal alignment. The other corresponds to highway length (measured along some constant elevation) and y coordinates (elevation) and is referred to as vertical alignment.Note that the horizontal alignment of a highway is referred to as the plan view, which is roughly equivalent to the perspective of an aerial photo of the highway. The vertical alignment is represented in a profile view, which gives the elevation of all points measured along the length of the highway (again, with length measured along a constant elevation reference).
Aside from considering the alignment problem as two two-dimensional problems, one further simplification is made: instead of using x and z coordinates, highway positioning and length are defined as the distance along the highway (usually measured along the centerline of the highway, on a horizontal, constant-elevation plane) from a specified point. This distance is measured in terms of stations, with each station consisting of 100 ft of highway alignment distance.