Suppose we want to consider confidence intervals where the confidence level is higher than 95%, such as a confidence level of 99%. Think back to the analogy about trying to catch a fish: if we want to be more sure that we will catch the fish, we should use a wider net. To create a 99% confidence level, we must also widen our 95% interval. On the other hand, if we want an interval with lower confidence, such as 90%, we could use a slightly narrower interval than our original 95% interval.
The 95% confidence interval structure provides guidance in how to make intervals with different confidence levels. The general 95% confidence interval for a point estimate that follows a normal distribution is
point estimate ± 1.96× SE
There are three components to this interval: the point estimate, “1.96”, and the standard error. The choice of 1.96 × SE was based on capturing 95% of the data since the estimate is within 1.96 standard errors of the parameter about 95% of the time. The choice of 1.96 corresponds to a 95% confidence level.